CLI Commands
Command-line tools for service creation, running, and deployment.
Overview
PraisonAI-SVC provides CLI commands for the complete service lifecycle.
praisonai-svc new
Purpose: Create a new service from template
praisonai-svc new my-service
# or with package integration
praisonai-svc new my-service --package praisonaippt
What it creates:
my-service/
├── app.py # ServiceApp boilerplate
├── .env.example # Required configuration
├── README.md # Setup instructions
└── pyproject.toml # Dependencies
Next steps:
cd my-service
cp .env.example .env
# Edit .env with your Azure credentials
# Edit app.py to implement your logic
praisonai-svc run
Purpose: Run the service locally for development
cd my-service
praisonai-svc run
What it does:
1. Loads environment variables from .env
2. Starts FastAPI server on http://localhost:8080
3. Starts worker process for job processing
4. Enables hot-reload for development
Test it:
# Health check
curl http://localhost:8080/health
# Create a job
curl -X POST http://localhost:8080/jobs \
-H "Content-Type: application/json" \
-d '{"payload": {"title": "Test"}}'
praisonai-svc deploy
Purpose: Deploy service to Azure Container Apps
cd my-service
praisonai-svc deploy
What it does: 1. Validates Azure CLI is installed and authenticated 2. Builds Docker image from your service 3. Pushes image to Azure Container Registry 4. Creates/updates Azure Container App 5. Configures environment variables 6. Sets up scaling rules (min 0, max 3 replicas)
Prerequisites:
- Azure CLI: brew install azure-cli
- Logged in: az login
- Resource group and container registry created
praisonai-svc logs
Purpose: View real-time logs from deployed service
cd my-service
praisonai-svc logs
# Follow logs (like tail -f)
praisonai-svc logs --follow
# Show last 100 lines
praisonai-svc logs --tail 100
Useful for: - Debugging production issues - Monitoring job processing - Tracking API requests - Identifying errors